Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Virus Res ; 344: 199348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467378

ABSTRACT

Avian influenza virus subtype H9N2 is endemic in commercial poultry in Tunisia. This subtype affects poultry and wild birds in Tunisia and poses a potential zoonotic risk. Tunisian H9N2 strains carry, in their hemagglutinins, the human-like marker 226 L that is most influential in avian-to-human viral transmission. For a better understanding of how ecological aspects of the H9N2 virus and its circulation in poultry, migratory birds and environment shapes the spread of the dissemination of H9N2 in Tunisia, herein, we investigate the epidemiological, evolutionary and zoonotic potential of seven H9N2 poultry isolates and sequence their whole genome. Phylogeographic and phylodymanic analysis were used to examine viral spread within and among wild birds, poultry and environment at geographical scales. Genetic evolution results showed that the eight gene sequences of Tunisian H9N2 AIV were characterized by molecular markers involved with virulence and mammalian infections. The geographical distribution of avian influenza virus appears as a network interconnecting countries in Europe, Asia, North Africa and West Africa. The spatiotemporal dynamics analysis showed that the H9N2 virus was transmitted from Tunisia to neighboring countries notably Libya and Algeria. Interestingly, this study also revealed, for the first time, that there was a virus transmission between Tunisia and Morocco. Bayesian analysis showed exchanges between H9N2 strains of Tunisia and those of the Middle Eastern countries, analysis of host traits showed that duck, wild birds and environment were ancestry related to chicken. The subtypes phylodynamic showed that PB1 segment was under multiple inter-subtype reassortment events with H10N7, H12N5, H5N2 and H6N1 and that PB2 was also a subject of inter-subtype reassortment with H10N4.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Phylogeny , Phylogeography , Animals , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/classification , Influenza A Virus, H9N2 Subtype/isolation & purification , Tunisia/epidemiology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Poultry/virology , Evolution, Molecular , Poultry Diseases/virology , Poultry Diseases/epidemiology , Genome, Viral , Animals, Wild/virology , Birds/virology , Chickens/virology
2.
Evol Bioinform Online ; 19: 11769343231212266, 2023.
Article in English | MEDLINE | ID: mdl-38033662

ABSTRACT

Bluetongue virus (BTV) is an arbovirus considered as a major threat for the global livestock economy. Since 1999, Tunisia has experienced several incursions of BTV, during which numerous cases of infection and mortality have been reported. However, the geographical origin and epidemiological characteristics of these incursions remained unclear. To understand the evolutionary history of BTV emergence in Tunisia, we extracted from Genbank the segment 6 sequences of 7 BTV strains isolated in Tunisia during the period 2000 to 2017 and blasted them to obtain a final dataset of 67 sequences. We subjected the dataset to a Bayesian phylogeography framework inferring geographical origin and serotype as phylodynamic models. Our results suggest that BTV-2 was first introduced in Tunisia in the 1960s and that since 1990s, the country has witnessed the emergence of other typical and atypical BTV serotypes notably BTV-1, BTV-3 and BTV-Y. The reported serotypes have a diverse geographical origin and have been transmitted to Tunisia from countries in the Mediterranean Basin. Interserotype reassortments have been identified among BTV-1, BTV-2 and BTV-Y. This study has provided new insights on the temporal and geographical origin of BTV in Tunisia, suggesting the contribution of animal trade and environment conditions in virus spread.

3.
Virus Res ; 322: 198929, 2022 12.
Article in English | MEDLINE | ID: mdl-36126884

ABSTRACT

H9N2 avian influenza virus (AIV) has been isolated from various species of wild birds and domestic poultry worldwide. It has been reported since the late 1990s, that H9N2 AIV has infected humans as reported in some Asian and North African countries. This subtype has already been circulating and constituting a serious threat to the poultry industry in Tunisia back in 2009. To investigate zoonotic potential and pathogenicity of H9N2 AIV in chickens and mice in Tunisia, five strains have been isolated during the period from 2014 to 2018. Samples were withdrawn from several wild bird species and environment (Lagoon water) of Maamoura and Korba Lagoons as well as Kuriat Island. Phylogenetic analyzes demonstrated that the isolated H9N2 strains belonged to the G1-like sublineage and were close to AIV H9N2 poultry viruses from North Africa, West Africa and the Middle East. All strains carried in their hemagglutinin the residue 226 L, which is an important marker for avian-to-human viral transmission. The hemagglutinin cleavage site has several motifs: PSKSSR/G, PARSSR/G and HARSSR/G. The neuraminidase showed S372A and R403W substitutions that have been previously detected in H3N2 and H2N2 viruses that were reported in human pandemics. Many mutations associated with mammalian infections have been detected in internal proteins. Pathogenicity evaluation in chickens showed that GF/14 replicates effectively in the lungs, tracheas, spleens, kidneys and brains and that it was transmitted among contact chickens. However, GHG/18 replicates poorly in chickens and has not an efficient transmission in contact chickens. GF/14 and GHG/18 could not kill mice though they replicated in their respiratory tract and caused a significant body weight loss (p < 0.05). This study highlights the importance of H9N2 AIV monitoring in both migratory birds and the environment to prevent virus transmission to humans.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Animals , Humans , Mice , Influenza A Virus, H9N2 Subtype/genetics , Phylogeny , Influenza A Virus, H3N2 Subtype , Tunisia , Hemagglutinins , Water , Chickens , Animals, Wild , Poultry , Mammals
4.
Pathogens ; 11(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36145448

ABSTRACT

Equid herpesvirus (EHV) is a contagious viral disease affecting horses, causing illness characterized by respiratory symptoms, abortion and neurological disorders. It is common worldwide and causes severe economic losses to the equine industry. The present study was aimed at investigating the incidence of EHVs, the genetic characterization of Tunisian isolates and a spatiotemporal study, using 298 collected samples from diseased and clinically healthy horses. The global incidence of EHV infection was found to be about 71.81%. EHV2 and EHV5 were detected in 146 (48.99%) and 159 (53.35%) sampled horses, respectively. EHV1 was detected in 11 samples (3.69%); EHV4 was not detected. Co-infections with EHV1-EHV2, EHV1-EHV5 and EHV2-EHV5 were observed in 0.33%, 1.34% and 31.54% of tested horses, respectively. Phylogenetic analyses showed that gB of EHV2 and EHV5 displays high genetic diversity with a nucleotide sequence identity ranging from 88 to 100% for EHV2 and 97.5 to 100% for EHV5. Phylogeography suggested Iceland and USA as the most likely countries of origin of the Tunisian EHV2 and EHV5 isolates. These viruses detected in Tunisia seemed to be introduced in the 2000s. This first epidemiological and phylogeographic study is important for better knowledge of the evolution of equid herpesvirus infections in Tunisia.

5.
Infect Genet Evol ; 102: 105300, 2022 08.
Article in English | MEDLINE | ID: mdl-35552003

ABSTRACT

Since the beginning of the Coronavirus disease-2019 pandemic, there has been a growing interest in exploring SARS-CoV-2 genetic variation to understand the origin and spread of the pandemic, improve diagnostic methods and develop the appropriate vaccines. The objective of this study was to identify the SARS-CoV-2s lineages circulating in Tunisia and to explore their amino acid signature in order to follow their genome dynamics. Whole genome sequencing and genetic analyses of fifty-eight SARS-CoV-2 samples collected during one-year between March 2020 and March 2021 from the National Influenza Center were performed using three sampling strategies.. Multiple lineage introductions were noted during the initial phase of the pandemic, including B.4, B.1.1, B.1.428.2, B.1.540 and B.1.1.189. Subsequently, lineages B1.160 (24.2%) and B1.177 (22.4%) were dominant throughout the year. The Alpha variant (B.1.1.7 lineage) was identified in February 2021 and firstly observed in the center of our country. In addition, A clear diversity of lineages was observed in the North of the country. A total of 335 mutations including 10 deletions were found. The SARS-CoV-2 proteins ORF1ab, Spike, ORF3a, and Nucleocapsid were observed as mutation hotspots with a mutation frequency exceeding 20%. The 2 most frequent mutations, D614G in S protein and P314L in Nsp12 appeared simultaneously and are often associated with increased viral infectivity. Interestingly, deletions in coding regions causing consequent deletions of amino acids and frame shifts were identified in NSP3, NSP6, S, E, ORF7a, ORF8 and N proteins. These findings contribute to define the COVID-19 outbreak in Tunisia. Despite the country's limited resources, surveillance of SARS-CoV-2 genomic variation should be continued to control the occurrence of new variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Amino Acids/genetics , COVID-19/epidemiology , Genome, Viral , Humans , Mutation , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Tunisia/epidemiology
6.
Virus Res ; 313: 198745, 2022 05.
Article in English | MEDLINE | ID: mdl-35306102

ABSTRACT

The H9N2 subtype of influenza A virus circulates frequently among poultry in Asian and North African countries causing economic loss in the poultry sector. The antigenic variations of the H9N2 virus were at the origin of its genetic evolution through the emergence of viral strains transmissible to humans and resistant to chemical antivirals, which require a strengthening of the fight means against this virus. In this study, we used a random linear hexapeptide library fused to the gene III protein of M13 filamentous bacteriophage to select new antiviral peptides that inhibit the infectivity of H9N2 virus. After three rounds of stringent selection and amplification, polyclonal phage-peptides directed against H9N2 virus were assessed by ELISA, and the optimal phage-peptides were grown individually and characterized for binding to H9N2 virus by monoclonal phage ELISA. The DNA of 27 phage-peptides clones was amplified by PCR, sequenced, and their amino acid sequences were deduced. Sixteen different phage-peptides were able to bind specifically the H9N2 virus, among them, 13 phage-peptides interacted with the hemagglutinin H9. Two selected peptides, P1 (LSRMPK) and P2 (FAPRWR) have shown antiviral activity in ovo and P1 was more protective in vivo then P2 when co-administered with the H9N2 virus. Mechanistically, these peptides prevent infection by inhibiting the attachment of the H9N2 virus to the cellular receptor. Molecular docking revealed that the peptides LSRMPK and FAPRWR bind to hemagglutinin protein H9, but interact differently with the receptor binding site (RBS). The present study demonstrated that the peptide P1 (LSRMPK) could be used as a new inhibitory molecule directed against the H9N2 virus.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Antiviral Agents/pharmacology , Epithelial Cells , Humans , Influenza A Virus, H9N2 Subtype/genetics , Molecular Docking Simulation , Virus Attachment
7.
Front Public Health ; 10: 990832, 2022.
Article in English | MEDLINE | ID: mdl-36684874

ABSTRACT

Introduction: The Delta variant posed an increased risk to global public health and rapidly replaced the pre-existent variants worldwide. In this study, the genetic diversity and the spatio-temporal dynamics of 662 SARS-CoV2 genomes obtained during the Delta wave across Tunisia were investigated. Methods: Viral whole genome and partial S-segment sequencing was performed using Illumina and Sanger platforms, respectively and lineage assignemnt was assessed using Pangolin version 1.2.4 and scorpio version 3.4.X. Phylogenetic and phylogeographic analyses were achieved using IQ-Tree and Beast programs. Results: The age distribution of the infected cases showed a large peak between 25 to 50 years. Twelve Delta sub-lineages were detected nation-wide with AY.122 being the predominant variant representing 94.6% of sequences. AY.122 sequences were highly related and shared the amino-acid change ORF1a:A498V, the synonymous mutations 2746T>C, 3037C>T, 8986C>T, 11332A>G in ORF1a and 23683C>T in the S gene with respect to the Wuhan reference genome (NC_045512.2). Spatio-temporal analysis indicates that the larger cities of Nabeul, Tunis and Kairouan constituted epicenters for the AY.122 sub-lineage and subsequent dispersion to the rest of the country. Discussion: This study adds more knowledge about the Delta variant and sub-variants distribution worldwide by documenting genomic and epidemiological data from Tunisia, a North African region. Such results may be helpful to the understanding of future COVID-19 waves and variants.


Subject(s)
COVID-19 , Genetic Variation , SARS-CoV-2 , Adult , Animals , Humans , Middle Aged , COVID-19/epidemiology , COVID-19/virology , Pangolins , Phylogeny , RNA, Viral , SARS-CoV-2/genetics , Tunisia/epidemiology
8.
Arch Virol ; 165(7): 1527-1540, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32335769

ABSTRACT

During 2009-2012, several outbreaks of avian influenza virus H9N2 were reported in Tunisian poultry. The circulating strains carried in their hemagglutinins the human-like marker 226L, which is known to be important for avian-to-human viral transmission. To investigate the origins and zoonotic potential of the Tunisian H9N2 viruses, five new isolates were identified during 2012-2016 and their whole genomes were sequenced. Bayesian-based phylogeny showed that the HA, NA, M and NP segments belong to the G1-like lineage. The PB1, PB2, PA and NS segments appeared to have undergone multiple intersubtype reassortments and to be only distantly related to all of the Eurasian lineages (G1-like, Y280-like and Korean-like). The spatiotemporal dynamic of virus spread revealed that the H9N2 virus was transferred to Tunisia from the UAE through Asian and European pathways. As indicated by Bayesian analysis of host traits, ducks and terrestrial birds played an important role in virus transmission to Tunisia. The subtype phylodynamics showed that the history of the PB1 and PB2 segments was marked by intersubtype reassortments with H4N6, H10N4 and H2N2 subtypes. Most of these transitions between locations, hosts and subtypes were statistically supported (BF > 3) and not influenced by sampling bias. Evidence of genetic evolution was observed in the predicted amino acid sequences of the viral proteins of recent Tunisian H9N2 viruses, which were characterized by the acquisition of new mutations involved in virus adaptation to avian and mammalian hosts and amantadine resistance. This study is the first comprehensive analysis of the evolutionary history of Tunisian H9N2 viruses and highlights the zoonotic risk associated with their circulation in poultry, indicating the need for continuous surveillance of their molecular evolution.


Subject(s)
Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Poultry Diseases/virology , Animals , Bayes Theorem , Evolution, Molecular , Genome, Viral , Humans , Influenza A Virus, H9N2 Subtype/classification , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza, Human/virology , Phylogeny , Poultry/virology , Poultry Diseases/epidemiology , Tunisia/epidemiology , Viral Proteins/genetics , Zoonoses/transmission , Zoonoses/virology
9.
Biosens Bioelectron ; 107: 170-177, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29455027

ABSTRACT

Influenza is a viral infectious disease considered as a source of many health problems and enormous socioeconomic disruptions. Conventional methods are inadequate for in-field detection of the virus and generally suffer from being laborious and time-consuming. Thus, studies aiming to develop effective alternatives to conventional methods are urgently needed. In this work, we developed an approach for the isolation and detection of influenza A virus subtype H9N2. For this aim, two specific influenza receptors were used. The first, anti-matrix protein 2 (M2) antibody, was attached to iron magnetic nanoparticles (MNPs) and used for the isolation of the virus from allantoic fluid. The second biomolecule, Fetuin A, was attached to an electrochemical detectable label, gold nanoparticles (AuNPs), and used to detect the virus tacking advantage from fetuin-hemagglutinin interaction. The MNP-Influenza virus-AuNP formed complex was isolated and treated by an acid solution then the collected gold nanoparticles were deposited onto a screen printed carbon electrode. AuNPs catalyzes the hydrogen ions reduction in acidic medium while applying an appropriate potential, and the generated current signal was proportional to the virus titer. This approach allows the rapid detection of influenza virus A/H9N2 at a less than 16 HAU titer.


Subject(s)
Biosensing Techniques/methods , Carbon/chemistry , Gold/chemistry , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza in Birds/diagnosis , Magnetite Nanoparticles/chemistry , Animals , Antibodies, Immobilized/chemistry , Catalysis , Chickens/virology , Eggs/virology , Hemagglutinin Glycoproteins, Influenza Virus/analysis , Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification , Immunoassay/methods , Influenza in Birds/virology , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microelectrodes
10.
J Virol Methods ; 243: 83-91, 2017 05.
Article in English | MEDLINE | ID: mdl-28159667

ABSTRACT

H9N2 Influenza subtype has emerged in Tunisia causing epidemics in poultry and resulting in major economic losses. New mutations in their hemagglutinin and neuraminidase proteins were acquired, suggesting their potential to directly infect humans. Effective surveillance tools should be implemented to help prevent potential spillover of the virus across species. We have developed a highly sensitive real time immuno-polymerase chain reaction (RT-I-PCR) method for detecting H9N2 virus. The assay applies aptamers as ligands to capture and detect the virus. First, a panel of specific ssDNA aptamers was selected via a one step high stringency protocol. Next, the panel of selected aptamers was characterized for their affinities and their specificity to H9N2 virus. The aptamer showing the highest binding affinity to the virus was used as ligand to develop a highly sensitive sandwich Aptamer I-PCR. A 3-log increase in analytical sensitivity was achieved as compared to a routinely used ELISA antigen test, highlighting the potential of this approach to detect very low levels of virus particles. The test was validated using clinical samples and constitutes a rapid and a label-free platform, opening a new venue for the development of aptamer -based viability sensing for a variety of microorganisms of economic importance in Tunisia and surrounding regions.


Subject(s)
Aptamers, Nucleotide , Immunoassay/methods , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza in Birds/diagnosis , Influenza, Human/diagnosis , Molecular Diagnostic Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Animals , Humans , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/immunology , Influenza in Birds/virology , Influenza, Human/virology , Poultry , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL
...